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Abstract

We study a fixed-T panel data logit model for ordered outcomes that accommodates fixed

effects and state dependence. We provide identification results for the autoregressive parameter,

regression coefficients, and the threshold parameters in this model. Our results require only

four observations on the outcome variable. We provide conditions under which a composite

conditional maximum likelihood estimator is consistent and asymptotically normal. We use

our estimator to explore the determinants of self-reported health in a panel of European countries

over the period 2003–2016 and find evidence for state dependence in self-reported health.1
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1 Introduction

Certain individual-level conditions may tend to persist over time. A common example of this in

the literature is self-reported health status. Health status often depends on its value in the previous

period, as health conditions may persist over time, given that recovery can take long, and that an

illness may even have permanent effects. For example, Table 1 presents a transition matrix for

self-reported health status in the United Kingdom for the period 2003-2016.2

For individuals who report a value of current health in a given year (rows, on a 5-point scale

with 5 being the highest), it shows the relative proportion of those who report a certain value in the

subsequent year (columns). A striking feature of this transition matrix is that much of the mass is

on or near the main diagonal. This feature is found across all countries in our analysis. In other

words, health status is persistent: individuals tend to remain at the same level of health.

There are at least two explanations for this observed persistence (Heckman, 1981; Honoré and

Kyriazidou, 2000): unobserved heterogeneity and state dependence. Consider first unobserved

heterogeneity. It refers to unobservable characteristics that affect the propensity to report permanently

higher or lower health status. These permanent unobserved (and observed) characteristics of

individuals that affect their health outcome have been extensively addressed in the health literature

(see for example Jones and Wildman, 2008; Lorgelly and Lindley, 2008). As a result, it is

important to take into account the role of unobserved heterogeneity when analyzing health data.

The appropriate econometric approach is to allow for fixed effects.

Consider now the second explanation for the observed persistence in health outcomes: state

dependence. This refers to the possibility that past health status may be related to current health

status even after conditioning on unobserved heterogeneity. State dependence arises if health

shocks are persistent, in the sense that a shock on health can have a long-lasting effect (a typical

example is injury leading to disability). Using a random effects approach, Contoyannis et al.

(2004) found evidence for such persistence in respondents of the British Household Panel survey.

2More information about the data and source is in Section 7, and Section C of the Supplemental

Appendix, where we analyze these data using the methodology proposed herein.
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We propose and analyze a panel data ordered logit model that includes both fixed effects

and a lagged dependent variable. This allows a researcher faced with panel data and an ordinal

outcome variable to disentangle unobserved heterogeneity from state dependence, and to quantify

state dependence. Specifically, we study the dynamic ordered logit model with fixed effects, or

DOLFE from now on,

Y ∗
i,t = αi +Xi,tβ +ρ1

{
Yi,t−1 ≥ k

}
−Ui,t , t = 1,2,3, (1)

Yi,t =



1 if Y ∗
i,t < γ2,

2 if γ2 ≤ Y ∗
i,t < γ3,

...

J if Y ∗
i,t ≥ γJ,

(2)

Ui,t |(αi,Xi,Yi,<t)∼ LOG(0,1), t = 1,2,3, (3)

where k, 2 ≤ k ≤ J, is a fixed and known cutoff for the lagged dependent variable. The person-

specific parameter αi captures unobserved heterogeneity, which we allow to be correlated with the

other quantities in the model in an unrestricted way (fixed effects). The time-varying covariates

Xi,t ∈ RKx are collected across time periods in Xi = (Xi,1,Xi,2,Xi,3), and the lagged dependent

variables for period t are collected in Yi,<t = (Yi,0, · · · ,Yi,t−1). The autoregressive parameter ρ

is the regression coefficient on the lagged dependent variable 1
{

Yi,t−1 ≥ k
}

; β is the regression

coefficient on the contemporaneous covariates; and the threshold parameters γ j map the underlying

latent variable Y ∗
i,t into the observed ordered outcome Yi,t . Equation (3) restricts the error terms Ui,t

to be i.i.d. logistic,3 and is a strict exogeneity assumption on the regressors and past outcomes.

This model combines a number of noteworthy features. First, it is a model for discrete ordered

outcomes, and therefore a nonlinear model. Second, it is dynamic, in the sense that the current

3Section B in the Supplemental Appendix discusses an extension that drops the logistic

assumption.
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outcome depends directly on the outcome in the previous period. This feature, called state dependence,

is governed by the autoregressive parameter ρ . Third, it allows for unobserved heterogeneity in

an unrestricted way, i.e. it is a fixed effects model. Fourth, the model is specified for only a small

number of time periods, T = 3. Period 0 is unmodelled, but an observation on the outcome variable

in time 0 is required for identification.

We believe that we are the first to provide identification and estimation results for all common

parameters in a dynamic ordered logit model with fixed effects and a fixed number of time periods.

Using four time periods of data on the ordinal outcome variable, we identify the autoregressive

coefficients on the lagged dependent variable, and the regression coefficients on the exogenous

regressors. We also identify the threshold parameters, which provides an additional interpretation

of the magnitude of the estimated coefficients. Our identification result suggests a composite

conditional maximum likelihood estimator for the parameters in our model. We establish conditions

under which that estimator is consistent and asymptotically normal.

We use our estimator to investigate the determinants of self-reported health, focusing on the

link between income and health in a panel of European countries over the period 2003-2016. We

obtain two main findings. First, even after controlling for unobserved heterogeneity, persistence

plays a positive and significant role in one’s self-reported health. In other words, one’s health is

dependent on the health in the previous period. This is to be expected, as health problems may

extend over a number of periods, or become permanent; and healthy people may be more likely

to remain healthy compared to those having existing health problems. Second, we find that when

controlling for unobserved heterogeneity, the link between income and health becomes statistically

insignificant, suggesting that other factors might explain the association between the two. This

is in line with studies that report a smaller or insignificant association when using fixed effects

(Gunasekara et al, 2011; Larrimore, 2011).
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2 Related literature in econometrics

We believe that our paper is the first to provide identification and estimation results for a panel

data model with (i) ordered outcomes; (ii) a lagged dependent variable; (iii) fixed effects; and

(iv) a fixed number of time periods. Our econometric contribution is related to several strands of

literature, each of which features a subset of these features.

Most closely related is the literature on binary and multinomial choice models with fixed effects

and lagged dependent variables, which features all but (i). The seminal work by Honoré and

Kyriazidou (2000) builds on Chamberlain (1985) to estimate the parameters in dynamic binary

choice logit models with fixed effects and time-varying regressors. Hahn (2001) discusses the

information bound for this model. Bartolucci and Nigro (2010, 2012) propose and analyze a

quadratic exponential approximation. Kitazawa (2022) and Honoré and Weidner (2020) construct

moment conditions that identify the finite-dimensional parameters. Honoré and Kyriazidou (2019)

discuss identification of some closely related models. Honoré and Tamer (2006), Aristodemou

(2021), and Khan et al. (2021, 2022) obtain results for models that do not have logistic errors. For

the multinomial model, Chamberlain (1980) studies the static logit case; Magnac (2000) studies the

dynamic version with logistic errors. For the multinomial model without logistic errors, see Shi et

al. (2018) for results on the static model. Khan et al. (2021) study both static and dynamic models.

We supplement these results by showing that in an ordered choice model, the thresholds in the

latent variable model can be identified along with the regression coefficients and the autoregressive

parameter.

The literature on static ordered logit models with fixed effects features all but (ii). This model

was analyzed by Das and van Soest (1999), Johnson (2004), Baetschmann et al. (2015), Muris

(2017), Botosaru and Muris (2017), and Botosaru et al. (2022). Bartolucci et al. (2022) start from

the static model to test for the presence of state dependence. Our result differs from the results in

those papers by providing identification and estimation results for a dynamic version of the ordered

logit model.

The literature on random effects dynamic ordered choice models features all but (iii). Random
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effects dynamic ordered choice models have been studied and applied extensively (Contoyannis et

al., 2004; Albarran et al., 2019). Such approaches require strong restrictions on the relationship

between the unobserved heterogeneity and the exogeneous variables in the model. Such restrictions

are usually unappealing to economists, as evidenced by the fact that they are rarely used in linear

models. Our approach does not impose random effects restrictions and is the first to provide results

for a fixed effects version of this model.

Note that our approach is fixed-T consistent. The difficulty of allowing for fixed effects and

state dependence is alleviated when one can assume that T → ∞, referred to as “large-T ”. Large-T

fixed effects dynamic ordered choice models have been studied by Carro and Traferri (2014) and

Fernández-Val et al. (2017), see also Carro (2007) for the binary outcome case. In the large-T

case, one can use techniques that correct for the bias that derives from including fixed effects in the

nonlinear panel model. This approach does not feature (iv). These techniques are not appropriate

for our empirical application, which is a rotating panel with T = 4.

One limitation of our approach, discussed in more detail in Section 3, is that we restrict the

way in which the lagged dependent variable enters the model. The random effects and large-T

approaches can accommodate a richer dynamic specification. In subsequent work, Honoré et al.

(2021), building on Honoré and Weidner (2020), find moment conditions for a fixed-T , fixed effects

ordered logit model with arbitrary dynamics. For that approach, the logit assumption on the error

terms is essential, whereas our approach extends to non-logit models with minor modifications

(see Section B in the Supplemental Appendix). Our estimation approach differs from that in

Honoré et al. (2021). Our estimator is likelihood-based, whereas the estimator in Honoré et al.

(2021) is based on conditional moments. An advantage of our likelihood approach is that it is

computationally very straightforward and requires only one step, whereas the GMM objective

function in Honoré et al. (2021) requires a preliminary step to estimate the weight matrix and to

turn the conditional moments into unconditional ones. A disadvantage of our approach is that it

is based on information from a subpopulation Xi,2 = Xi,3 and therefore requires the choice of a

bandwidth parameter is a continuous regressor is present. This is not the case for the approach in
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Honoré et al. (2021), nor for the approaches in Kitagawa (2021) and Khan et al. (2022).

3 Binary dynamics

Our approach allows for “binary dynamics”: the lagged dependent variable only shows up through

the term ρ1
{

Yi,t−1 ≥ k
}

, where k is known and ρ is estimated. With binary dynamics, there is a

ceteris paribus effect on the future outcome Yi,t+1 if we exogenously change the value of Yi,t from

a group of low values (Yi,t < k) to the group of high values (Yi,t ≥ k), but there is no effect for a

change in Yi,t that leaves the group unchanged.

The purpose of this section is to give a few examples where such a structure is plausible. We

start with an example from health economics, motivating the empirical application in Section 7.

We then give two more examples, from financial economics and sports economics. These examples

have a common structure: we identify groups of high and low values of Yit and argue that the ceteris

paribus effect on future values of Yi,t+1 of between-group changes in Yi,t is much more important

than within-group changes in Yi,t .

Our first example is our empirical application on self-reported health status. While there are

multiple levels of self-reported health, being above or below a threshold at which medical care is

demanded in period t −1 is essential in determining health status in period t. Galama and Kapteyn

(2011) formalized this important issue by building on the seminal papers by Grossman (1972a;

1972b).

Second, government bonds are ordered by rating (20 tiers), which are grouped into two categories:

Investment Grade (IG) and Non-Investment Grade (NIG). IG Governments can easily raise credit,

NIG Governments cannot. This affects economic indicators and returns expectations, raising a

country’s economic profile and next period’s credit rating (Rigobon, 2002).

Third, finishing in the top four positions of the soccer domestic league qualifies a team for

the European Champions League competition the following season. This leads to considerable

financial benefits (Peeters and Szymanski, 2014), enabling the club to sign better soccer players,
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thus increasing the chance of performing better in next year’s league (Ferri et al., 2017).

4 Identification

We normalize γk = 0, where k is as in equation (1). This normalization is without loss of generality

because αi is unrestricted. Our model implies that the binary variable Di,t(k) = 1{Yi,t ≥ k} follows

the dynamic binary choice logit model in Honoré and Kyriazidou (2000), HK hereinafter. Specifically,

equation (3) in HK applies to the transformed model

Di,t(k) = 1
{

Xi,tβ +ρDi,t−1 (k)+αi −Ui,t ≥ 0
}
, (4)

i.e. the transformed model follows a dynamic binary choice logit model with fixed effects. The

implied conditional probabilities relevant for our analysis are

P
(

Di,0 (k) = 1
∣∣Xi,αi

)
≡ p0 (Xi,αi) , (5)

and, for t = 1,2,3,

P(Di,t (k) = 1|Xi,αi,Di,<t (k)) = Λ(αi +Xi,tβ +ρDi,t−1 (k)) , (6)

where the logistic CDF is denoted by Λ(u)= exp(u)/(1+ exp(u)), and we let Di,<t (k)= (Di,0 (k) , · · · ,Di,t−1 (k)).

HK provide conditions that guarantee identification of β and ρ by constructing a conditional

probability that features (β ,ρ) but that is free of αi.

If Yi,t has at least three points of support, there is information in Yi,t beyond Di,t (k). In the

remainder of this section we show that this information can be used to identify the threshold

parameters

γ ≡ (γ2,γ3, · · · ,γk−1,γk+1, · · · ,γJ) .
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Knowledge of γ helps with the interpretation of all model parameters, see Section 4.1.

We now construct a conditional probability that features (β ,ρ,γ) but not the incidental parameters

αi. To this end, extend the definition

Di,t ( j) = 1{Yi,t ≥ j} , 2 ≤ j ≤ J,

to thresholds j ̸= k, and abbreviate Di,t ≡Di,t (k). Define the events
(
Ai, jl,d0,d3 ,Bi, jl,d0,d3,Ci, jl,d0,d3

)
,

with 2 ≤ j ≤ k ≤ l ≤ J, as

Ai, jl,d0d3 =
{

Di,0 = d0,Di,1 = 0,Di,2 (l) = 1,Di,3 ( j) = d3
}
, (7)

Bi, jl,d0d3 =
{

Di,0 = d0,Di,1 = 1,Di,2 ( j) = 0,Di,3 (l) = d3
}
,

Ci, jl,d0d3 = Ai, jl,d0d3 ∪Bi, jl,d0d3 .

The event Ai, jl,d0d3 corresponds to moving up during the middle periods t = 1,2, starting below k

to moving up to at least l ≥ k. The event Bi, jl,d0d3 corresponds to moving down from at least k to

below j ≤ k.

If j = k = l, the event Ci,kk,d0d3 corresponds to switchers (observations with Di,1+Di,2 = 1), as

in HK, see (4). But in the ordered model, it is possible to vary the cutoffs in the periods t = 2,3,

if the dependent variable has more than two points of support. Varying the cutoffs in this way

is what distinguishes our conditioning event from HK’s. This allows us to identify the threshold

parameters.

The following result shows that different choices of ( j, l) reveal different combinations of

thresholds in certain conditional probabilities that do not depend on the incidental parameters αi.

In what follows, the change in the regressors from period 1 to 2 is given by ∆Xi = Xi,2 −Xi,1.

Theorem 1 (Sufficiency). For DOLFE (the dynamic ordered logit model with fixed effects), for
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any ( j, l) such that 2 ≤ j ≤ k ≤ l ≤ J, and for any d0,d3 ∈ {0,1}×{0,1} ,

P
(

Ai, jl,d0d3

∣∣Xi,Ci, jl,d0d3,Xi,2 = Xi,3
)
= 1−Λ

(
∆Xiβ +ρ (d0 −d3)+(1−d3)γl +d3γ j

)
(8)

P
(

Bi, jl,d0d3

∣∣Xi,Ci, jl,d0d3,Xi,2 = Xi,3
)
= Λ

(
∆Xiβ +ρ (d0 −d3)+(1−d3)γl +d3γ j

)
. (9)

Identification of all model parameters is achieved by considering all possible combinations of

cutoffs. It is clear from Theorem 1 that different choices for ( j,k, l,d0,d3) reveal information about

distinct linear combinations of (β ,ρ,γ). If the following assumption holds, the joint information

across all choices of ( j,k, l,d0,d3) is sufficient to identify all model parameters.

Assumption 1. For all ( j, l) such that 2 ≤ j ≤ k ≤ l, and for all d0,d3 ∈ {0,1}

Var
(

∆Xi|Xi,2 = Xi,3,Ci, jl,d0,d3

)
is invertible.

This assumption guarantees that for each choice of ( j, l), there is sufficient variation in ∆Xi in

the subpopulation of stayers Xi,2 = Xi,3 to identify the regression coefficient. This assumption can

be weakened: we need sufficient variation for only some ( j, l). However, if it fails for sufficiently

many ( j, l), not all threshold parameters may be identified.

Denote by Yi = (Yi,0,Yi,1,Yi,2,Yi,3) the time series of dependent variables for a given individual.

Theorem 2 (Identification). If Assumption 1 holds, then (β ,ρ,γ) can be identified from the joint

distribution of the vector (Xi,Yi) generated by DOLFE (the dynamic ordered logit model with fixed

effects).

4.1 Interpretation of the parameters

A key difference between ordered choice models with J > 2 and binary choice models with J = 2 is

the presence of the threshold parameters γ j. These parameters measure the width of each category

on the scale of the latent variable Y ∗
i,t . They may be used for interpretations not available for binary
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choice models with fixed effects, which feature only one threshold. Here, we discuss such an

interpretation by building on the approach in Muris (2017, III.c) for static ordered choice models

with fixed effects.4

To do this, let

Y ∗
i,t (x) = αi + xβ +ρ1

{
Yi,t−1 ≥ k

}
−Ui,t , (10)

be the latent variable for an individual with regressors set to a counterfactual value x, while keeping

everything else equal. Note that Y ∗
i,t = Y ∗

i,t (Xi,t). Define the counterfactual for the ordered outcome

as

Yi,t (x)≥ j ⇔ Y ∗
i,t (x)≥ γ j. (11)

Consider an individual who in time period t is observed to be in an intermediate category, i.e.

Yi,t = j ∈ {2, · · · ,J−1}. The latent variable model tells us that

Y ∗
i,t = αi +Xi,tβ +ρ1

{
Yi,t−1 ≥ k

}
−Ui,t ∈

[
γ j,γ j+1

)
.

Let

δ
j

m =
γ j+1 − γ j

βm
, (12)

where βm is the regression coefficient associated with regressor m, and pick a ∆ ≥ δ
j

m. Then

Y ∗
i,t +∆×βm ≥ γ j +δ

j
m ×βm

= γ j +
(
γ j+1 − γ j

)
= γ j+1,

4Alternatively, we could extend the results on partial effects for static nonlinear panels in

Botosaru and Muris (2017) to the dynamic case.
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so that by (11), we have that

P(Yi,t (Xi,t +∆× em)≥ j+1|Yi,t = j) = 1,

where em is a vector with Kx elements that are all zero, except for the mth element that is equal to

1. In other words, a change of at least δ
j

m in the value of regressor m moves any individual who is

observed to be in category j = 2, · · · ,J−1 to at least category j+1, all else equal.5

5 Estimation

Theorem 1 suggests that one can use a conditional maximum likelihood estimator (CMLE) to

estimate a linear combination of the model parameters for each choice of 2 ≤ j ≤ k ≤ l. Theorem

5A similar interpretation can be constructed for the autoregressive coefficient ρ . Define the

counterfactual latent variable as a function of the lagged outcome holding the regressors at Xi,t , i.e.

Y ∗
i,t (yt−1) = αi +Xi,tβ +ρ1{yt−1 ≥ k}−Ui,t , (13)

and define Yi,t (yt−1) analogous to (11). Let

δ
j

ρ =
γ j+1 − γ j

ρ
, (14)

and following the same reasoning as above, if δ
j

ρ < 1, then

P(Yi,t (1)≥ j+1|Yi,t = j,Yi,t−1 = 0) = 1.

In other words, if δ
j

ρ < 1, then all individuals with Yi,t−1 < k and Yi,t = j ∈ {2, · · · ,J−1} would

move to at least category j+1 if we change their Yi,t−1 to at least k, all else equal. Thus, we may

think of δ
j

ρ as a measure of state dependence. Even if δ
j

ρ ≥ 1, and the exact reasoning above does

not apply, we may still interpret it as a measure of state dependence.
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2 suggests that a composite CMLE (CCMLE), based on the combination of conditional likelihoods

across all choices of ( j, l), may be used to estimate all model parameters (β ,ρ,γ). In this section

we define the CCMLE and study its large sample behavior by extending HK’s results for dynamic

binary choice models to our setting.

The basic idea is to construct an estimator based on the conditional likelihood in Theorem

1. Which subset of parameters is involved will depend on the choice of ( j, l). The conditional

likelihood for a given ( j, l) features the subvector θ jl of θ of length K jl ,

θ jl =



(β ,ρ) if j = k = l,(
β ,ρ,γ j,γl

)
if j < k < l,

(β ,ρ,γl) if j = k < l,(
β ,ρ,γ j

)
if j < k = l,

as the coefficients on augmented regressors Zi, jl ,

Zi, jl =



(
∆Xi,Di,0 −Di,3, jl

)
if j = k = l,(

∆Xi,Di,0 −Di,3, jl,Di,3, jl,1−Di,3, jl
)

if j < k < l,(
∆Xi,Di,0 −Di,3, jl,1−Di,3, jl

)
if j = k < l,(

∆Xi,Di,0 −Di,3, jl,Di,3, jl
)

if j < k = l,

where

Di,3, jl =


Di,3 ( j) if Di,1 = 0,

Di,3 (l) if Di,1 = 1.
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We similarly define

Di,2, jl =


Di,2 (l) if Di,1 = 0,

Di,2 ( j) if Di,1 = 1,

and define

hi, jl
(
θ jl

)
= 1

{
Di,1 ̸= Di,2, jl

}
× ln

[
exp

(
Zi, jlθ jl

)Di1

1+ exp
(
Zi, jlθ jl

)] . (15)

Our notation mirrors that in HK: Compare our (15) to h(·) on p. 848 of HK. The only differences

are capitalization, our jl-subscript, and that we have D instead of y due to binarization. Thus, for

every ( j, l), our hi, jl takes the form of HK’s unweighted objective function.

In view of the conditioning in Theorem 1, we must consider a version of (15) local to Xi,2 =Xi,3.

With discrete covariates, we could use

lD
i, jl

(
θ jl

)
= 1

{
Xi,2 = Xi,3

}
×hi, jl

(
θ jl

)
.

The limiting distribution of an estimator based on lD
i, jl can be obtained using standard methods.

Our empirical application has both continuous and discrete covariates. To accommodate that case,

partition

Xi,t =

[
Xi,t,c Xi,t,d

]
into a subvector of Kx,c continuous covariates Xi,t,c, and a subvector Xi,t,d with Kx,d discrete covariates,

where Kx,c,Kx,d ≥ 1 and Kx,c +Kx,d = Kx.

Define

li, jl
(
θ jl

)
= K

(
Xi,2,c −Xi,3,c

σn

)
×1

{
Xi,2,d −Xi,3,d = 0

}
×hi, jl

(
θ jl

)
, (16)

where K is a kernel function and σn is a bandwidth satisfying conditions described below. Our

estimator maximizes the sample average of (16) summed over ( j, l):
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θ̂n = argmaxθ∈Θ ∑
2≤ j≤k≤l≤J

n

∑
i=1

li, jl
(
θ jl

)
. (17)

Theorem 3. If Assumption 1 holds, and if the following assumptions hold:

(C1) {(Yi,Xi)}n
i=1 is a random sample of n observations from DOLFE;

(C2) θ0 ∈ Θ and Θ is compact;

(C3) Conditional on Xi,2,d−Xi,3,d = 0, the random vector Xi,2,c−Xi,3,c is absolutely continuously

distributed with conditional density denoted fc|d (·|0) that is bounded from above on its support,

and strictly positive and continuous in a neighborhood of zero. Furthermore,

q0 := P
(
Xi,2,d −Xi,3,d = 0

)
> 0;

(C4) The function E
[
∥∆Xi∥2

∣∣Xi,2,c −Xi,3,c = ·,Xi,2,d −Xi,2,d = 0
]

is bounded on its support;

(C5) For each j, l, the function E
[

hi, jl
(
θ jl

)∣∣Xi,2,c −Xi,3,c = ·,Xi,2,d −Xi,2,d = 0
]

is continuous

in a neighborhood of zero for all θ jl;

(C6) The function E
[

∆X
′
i ∆Xi

∣∣∣Xi,2,c −Xi,3,c = ·,Xi,2,d −Xi,3,d = 0
]

has full column rank Kx in a

neighbourhood of zero;

(C7) K : RKx,c → R is a function of bounded variation that satisfies: (i) supv∈RKx,c |K (v)|< ∞,

(ii)
∫
|K (v)|dv < ∞, and

∫
K (v)dv = 1;

(C8) σn is a sequence of positive numbers such that σn → 0 as n → ∞,

then θ̂n
p→ θ0 as n → ∞.

Proof. See Appendix A.3. Our proof extends HK’s proof of their Theorem 1.

To describe the limiting distribution of the CCMLE (17), let θ jl0 denote the true value of θ jl

(the corresponding subvector of θ0); let Θ jl denote the associated parameter space; and let h(1)jl (·)

and h(2)jl (·) denote the first and second derivatives of h jl with respect to θ .

Theorem 4. Let the assumptions of Theorem 3 hold, and additionally assume:

(N1) θ0 ∈ int(Θ);
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(N2) fc|d (·|0) (defined in Theorem 3, C3) is s times differentiable on its support and has

bounded derivatives;

(N3) For each j, l, the function E
[

h(1)i, jl

(
θ jl0

)∣∣∣Xi,2,c −Xi,3,c = ·,Xi,2,d −Xi,3,d = 0
]

is s times

differentiable on its support and has bounded derivatives;

(N4) For each j, l, the function E
[

h(2)i, jl

(
θ jl

)∣∣∣Xi,2,c −Xi,3,c = ·,Xi,2,d −Xi,3,d = 0
]

is continuous

in a neighborhood of zero for all θ jl ∈ Θ jl;

(N5) The function E
[
∥∆Xi∥6

∣∣Xi,2,c −Xi,3,c = ·,Xi,2,d −Xi,3,d = 0
]

is bounded on its support;

(N6) The function E
[

h(1)i, jl

(
θ jl0

)
h(1)i, jl

(
θ jl0

)′∣∣∣Xi,2,c −Xi,3,c = ·,Xi,2,d −Xi,3,d = 0
]

is continuous

in a neighbourhood of zero;

(N7) K : RKx,c → R is an s’th order bias-reducing kernel that satisfies conditions (N7i) and

(N7ii) in HK’s Theorem 2;

Then, as n → ∞ and
√

nσ
Kx,c
n σ s

n → 0,

√
nσ

Kx,c
n

(
θ̂n −θ0

)
d→ N

(
0,J−1V J−1) ,

where

J = ∑
j,l

J j,l, J j,l =− fc|d (0|0)q0E
[

h(2)jl

(
θ jl,0

)∣∣∣Xi,2 −Xi,3 = 0
]
,

and V is the asymptotic variance of ∑ j,l Zn, jl (θ0),

Zn, jl (θ0) =
1√

nσ
Kx,c
n

n

∑
i=1

K
(

Xi,2,c −Xi,3,c

σn

)
×1

{
Xi,2,d −Xi,3,d = 0

}
×h(1)i, jl

(
θ jl,0

)
− 1√

nσ
Kx,c
n

n

∑
i=1

E
[

K
(

Xi,2,c −Xi,3,c

σn

)
×1

{
Xi,2,d −Xi,3,d = 0

}
×h(1)i, jl

(
θ jl,0

)]
.

Proof. See Appendix A.4.

We recommend estimating standard errors using the bootstrap, and forming confidence intervals

based on a normal approximation using these bootstrap standard errors. We investigate the performance

16



of this procedure in a simulation study in Section 6, and use it in the empirical application in

Section 7.

6 Simulation study

We now describe the results of a simulation study on the finite sample properties of the CCMLE

introduced in Section 5. The simulation study was designed with the empirical application in

Section 7 in mind: we use the regressor values and parameter estimates from Section 7 to generate

data from DOLFE.6 The goal of this section is also to inform our choice of bandwidth for the

empirical application, and to investigate the reliability of bootstrap-based confidence intervals.

First, we document the behavior of the CCMLE for the autoregressive parameter and threshold

parameters for various values of the sample size n and various values of the bandwidth parameter

σn. For each of the S = 100 simulation runs, we use the regressor values of the first n observations,

generate αi ∼ N (0,1) and then compute Yi,t from DOLFE. We repeat this for sample sizes

n ∈ {500,1000,5000,10000,50000,100000,150000,200000,260601}, where n = 260601 is the

sample size in the empirical application. We compute the CCMLE for bandwidth parameter values

σn ∈ {0.01,0.05,0.1,0.25,0.5,1.0,2.0,5.0,10.0}, and use the Gaussian kernel.

Table 2 reports results for the autoregressive parameter, with true value ρ = 0.733. Table 3

presents additional results for the estimators of the threshold parameters γ2 = −3.275 and γ4 =

3.326. Table 2 reveals significant finite sample bias at n = 500 across all choices of σn. Some of

the bias is still present at n = 1000. Once the sample size reaches n = 5000, the bias is negligible

for a sufficiently large value of the bandwidth. For sample sizes above n = 150000, the bias is

small across all bandwidths. For the preferred bandwidth in our empirical application (σn = 1) the

bias at n = 10000 and above is 0.732−0.733 = −0.001. The standard deviation of the estimator

declines with n.

6The parameter estimates we use are in Table 6, column (a). Summary statistics for the

regressors are in Supplementary Appendix Section C.
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The results for γ2 and γ4 in Table 3 also show a small finite sample bias for n = 50000 and

above. For sample sizes up to 200000, the choice of bandwidth matters for the bias of the threshold

parameter estimators. However, for our preferred bandwidth σn = 1, a sample size of 50000 seems

to be sufficient for a negligible bias (-0.002 and 0.000, respectively).

Second, we investigate the performance of bootstrap inference for the CCMLE. We focus on

the regression coefficient β1 = 0.049 on the continuous covariate log incomeit . Table 4 presents

coverage rates of 95% confidence intervals constructed from a normal approximation, the CCMLE

point estimate, and bootstrap standard errors from 100 replications.

The main takeaways are: (i) for n ≥ 1000, the 95% confidence interval that we propose has

close to nominal coverage for our preferred bandwidth σn = 1; (ii) at small sample sizes, the

confidence intervals are conservative; (iii) confidence intervals shrink with the sample size; (iv)

confidence intervals size almost does not decrease in σn beyond σn = 1.

Third, we study what happens if the true model has arbitrary dynamics, in the sense that the

true DGP has outcome equation

Y ∗
i,t = αi +ρ21

{
Yi,t−1 = 2

}
+ρ31

{
Yi,t−1 = 3

}
+ρ41

{
Yi,t−1 = 4

}
+

+β1 log incomeit + · · ·+β6otherit −Uit ,

which coincides with the model underlying our CCMLE only if ρ2 = 0 and ρ3 = ρ4 = 0.733. We

fix n = 10000 and σn = 1 and consider results for specifications with

(ρ2 = δ ,ρ3 = 0.733,ρ4 = 0.733+δ ) ,

varying δ ∈ {0.0,0.1,0.2,0.3,0.4}. The lowest value of δ = 0 corresponds to our model with

binary dynamics. A value of δ = 0.40 is close to a model with dynamics that are linear in Yi,t−1,

which is a severe misspecification relative to δ = 0. Table 5 presents a summary of our results.

The bottom line is that the CCMLE is robust against (severe) misspecification. The mean of

18



the CCMLE has the right sign and order of magnitude for all coefficients except for ρ .7 The results

for β6 = −0.370 are illustrative: under the correct specification, the bias is negligible (0.004 on

-0.370). At a medium level of misspecification, the bias increases, but only to about .01.

These three simulation studies inform our estimation strategy for the empirical application

below. In particular, they inform our choice of bandwidth (preferred bandwidth σn = 0.1, present

results for σn ∈ (0.1,1,10)) and they suggest that our bootstrap-based confidence intervals have

the right coverage.

7 Persistence in health status

Our analysis uses panel data for the period 2003-2016 from the European Union Statistics on

Income and Living Conditions (EU-SILC), see Eurostat (2017) for detailed documentation.8 EU-

SILC provides a set of indicators on income and poverty, social inclusion, living conditions and,

importantly, health status. For each country in the European Union, plus Iceland, Norway, and

Switzerland, EU-SILC contains data on a representative sample of the population of those with 18

years and older.

EU-SILC is a rotating panel. Every individual is followed over a period of two to four years.

The total number of individual-years for the period 2003-2016 is 1,273,877. Our identification

result demands four observations per individual, so we restrict attention to individuals who report

valid information on their health status for 4 consecutive years. There are 260,601 individuals

(1,042,404 individual-years) who satisfy this restriction and have no missing outcomes or explanatory

variables. The proportion of incomplete samples differs across countries. As a result, the sample

we work with may not be representative of the EU-SILC’s population. For example, of the 27

countries that contribute to our sample, the largest contributors are Italy (with 43,385 individuals),

Spain (25,634), and Poland (22,628); the smallest are Portugal (12), Iceland (1,496), and Slovakia

7The results for ρ are hard to interpret, as the interpretation of the coefficient estimated by

CCMLE changes with δ .
8The data were made available to us by Eurostat under Contract RPP 132-2018-EU-SILC.
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(1,982).

The outcome variable in our analysis is self-reported health status: self-perceived physical

health, elicited during EU-SILC interviews. The person answers the question about how her

physical health is in general, at the date of the survey, by classifying it as one of the following: (1)

bad and very bad (12% in our sample); (2) fair (26%); (3) good (44%); (4) very good (19%).9 Of

260,601×3 = 781,803 health transitions that we observe, most often there is no change in health

status (65.6%). Decreases by one unit (16%) are slightly more frequent than increases by one unit

(15%). Two-unit increases (1.2%) and decreases (1.5%) are infrequent, and three-unit increases

(0.08%) and decreases (0.12%) are rare.

A number of studies have found a positive association between income and health (Carrieri and

Jones, 2017; Ettner, 1996; Frijters et al., 2005; Mackenbach et al., 2005), but empirical evidence

of a strong effect is sometimes limited (Larrimore, 2011; Gunasekara et al, 2011; Johnston et al.,

2009). Therefore, it is important to control for income when examining the determinants of health

status.

In Section C of the Supplemental Appendix, we provide detailed descriptive statistics on all the

variables used in the application. In our fixed effects results below, we do not further control for

variables that do not change over the sample period for a given individual. However, we include a

set of time-invariant explanatory variables when we obtain results for non-fixed effects estimators.

Coefficient estimates for these variables are omitted from the main text, and reported in Table 3 in

Section C of the Supplemental Appendix.

We estimate the parameters in the dynamic ordered logit model with fixed effects, with latent

variable outcome equation

SRH∗
i,t = αi +ρ1

{
SRHi,t−1 ≥ 3

}
+β1 log incomeit +β2childit +β3marriedit+ (18)

+β4unempit +β5retiredit +β6otherit −Uit ,

9We have merged the categories “bad” and “very bad” in the original reported variable, because

there is only a small fraction of observations with “very bad” health status.
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and present the results in Table 6. The first four columns (a-d, “DOLFE”) present the results for

(18) using the estimator described in Section 5. Different values of σn refer to different values of

the bandwidth parameter in Theorems 3 and 4.10 Column (d) omits the employment variables, to

check whether the relationship between employment status and income matters for estimation of

the effect of income on health.

The application of our estimator requires a mass of cross-section units whose change in regressors

from period 2 to 3 is in a small neighborhood around 0, see assumption (C3) in Theorem 3. In our

sample there are 218,254 individuals with no change in their discrete regressors. Among those,

there are 213,743 with a change of less than 1 in the continuous regressor; 91,310 with a change

of less than 0.1; and 9,014 with a change of less than 0.01. This suggests that the assumption is

reasonable for our application.

We also present estimation results for several other estimators. Results for the static ordered

logit model with fixed effects, i.e. setting ρ = 0 in (18), are obtained using the estimator in Muris

(2017), and presented in column (e) (“FEOL”). Column (f) (“DOL”) estimates a dynamic ordered

logit model without fixed effects, i.e. (18) with αi = α . Column (g) (“OL”) presents results for

cross-sectional ordered logit estimator that does not take into account fixed effects or dynamics

(i.e. αi = α and ρ = 0 in (18)). We also present results for a static linear model with (h, “FELM”)

and without (i, “LM”) fixed effects. The standard errors for all estimators are obtained using the

bootstrap (500 replications). For the estimators that are not of the fixed effects type, we additionally

control for education, gender, education level, and the level of urbanization.

Income. Our main explanatory variable of interest is income (log income, coefficient β1).

Across almost all specifications we find a positive association between income and health. The

only exception is column (b), where the point estimate is negative, and about the same magnitude

as the standard error.

10Our preferred choice for the bandwidth parameter is σn = 1.0. See Section 6 for a simulation

study that investigates the role of this bandwidth parameter, and that provides some support for our

preference.
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Controlling for unobserved heterogeneity leads to a very strong reduction in the magnitude of

the association. For example, a comparison of columns (e) and (g) indicates that for the static

case, controlling for unobserved heterogeneity reduces the coefficient on income by more than a

factor of 20. For this comparison, note that the threshold differences increase, suggesting that the

scale increases; compare also the coefficients on the other variables, with an unchanged order of

magnitude. We are not the first to observe a limited association between income and health. In a

review of the literature, Gunasekara et al. (2011) found a small positive link between income and

self-reported health, which is diminished when controlling for unmeasured confounders.

The estimated effect of income also changes when we control for state dependence. Comparing

columns (f) and (g), we see that controlling for state dependence in a model without unobserved

heterogeneity reduces the association between income and health. So, individually controlling for

unobserved heterogeneity or for dynamics diminishes the magnitude of the association between

health and income.

To get a sense of the magnitude of the coefficient, we obtain the sample analog of δ
j

log(income),

the parameter introduced in Section 4.1. For our main specification in column (a), we find that

δ̂
3
log(income) =

γ̂4 − γ̂3

β̂1
≈ 3.326

0.049
≈ 70,

meaning that an increase in log income of 70 would be needed to move all of those in category 3

to category 4. The result for category 2 is similar in magnitude.

Finally, a comparison between columns (a) and (d) shows that the estimate for income association

is not robust to controlling for employment status. This seems to indicate that employment status

was driving (part of) the association between income and self-reported health.

State dependence. We estimate an autoregressive parameter of around 0.75, with threshold

differences of about 3. The estimated ratio of ρ to the thresholds (which measure the distance

from category 3) are much lower than for column (f). This confirms the importance of controlling

for unobserved heterogeneity, which reduces the estimated magnitude of state dependence by a
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factor of 3. Nevertheless, even when controlling for unobserved (and observed) heterogeneity, we

find strong evidence for large, positive state dependence in health.

In terms of δ
j

ρ , we find that

δ̂
3
ρ =

γ̂4 − γ̂3

ρ̂
≈ 3.326

0.733
≈ 4.5,

so that changing from a SRHi,t−1 < 3 to a SRHi,t−1 ≥ 3 leads to a change in the latent variable

that is approximately 1/4.5 of the amount required to move all individuals with SRHi,t = 3 to

SRHi,t (1) = 4.

Another way to gain a sense of the magnitude of persistence, also available for binary choice

methods, is to compare estimates of ρ to estimates of regression coefficients. For example, in

our preferred specification in column (a), a health shock that lifts a person from any category

below 3, to category 3 or 4, has an impact on future health that is almost 4 times that of becoming

unemployed. The impact is more than 5 times that of marrying.

Other time-varying covariates.11 The literature so far has been inconclusive on how retirement

is associated with health. On one hand, retiring allows more time for health-promoting activities,

and reduces work-related stress. On the other hand, people may lose traction and motivation and

may become less active. Therefore, while Coe and Zamarro (2011) find that retirement improves

health, Behncke (2012) finds an increase in the likelihood of disease following retirement. In

our DOLFE model, the coefficient is statistically insignificant. This suggests that the association

between retirement and health may not be as strong as previously thought. Compared to the

FEOL model, the association between retirement and health disappears when controlling for state

dependence. The results on retirement should be treated with caution. People are more likely to

retire at an advanced age, so the retirement variable may be picking up some of the age effect on

11It is worth mentioning that as covariates are restricted to having identical values in two periods,

the empirical analysis focuses on a sub-group of individuals, and any interpretation of the results

should be based on the understanding that these conditions must hold.
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health.

The extensive literature on the link between unemployment and health in particular, and economic

conditions and health more generally, is broadly inconclusive. Some studies have suggested a

protective role of unemployment on health (Ruhm, 2000), while others suggest that unemployment

is detrimental for health (McInerney and Mellor, 2012). Our results appear to be more in line with

the findings of Ruhm (2015) and Böckerman and Ilmakunnas (2009). In DOLFE, the coefficient of

being unemployed is negative and statistically significant. Controlling for state dependence does

not change things compared to the FEOL model.

Having children is insignificant in our DOLFE model, while previous studies have provided

mixed findings on this issue (Mckenzie and Carter, 2013; Evenson and Simon, 2005). This is also

insignificant in the FEOL model, suggesting that previous findings on having children might have

been driven by unobserved heterogeneity.

Being married is generally considered a protective factor for health (Kaplan and Kronick, 2006;

Molloy et al., 2009). In our model, however, it is statistically insignificant – as opposed to the

FEOL model in which it was positive and significant. Thus, controlling for state dependence

appears to be important for this variable.

8 Conclusion

We study a fixed−T dynamic ordered logit model with fixed effects. We demonstrate identification

of the autoregressive coefficients on the lagged dependent variable, the regression coefficients

on the exogenous regressors, as well as differences of the threshold parameters. Our results

require only four time periods of data on the ordinal outcome variable. We propose estimators

for all these parameters, study their asymptotic behavior, and use them to study the relationship

between income and self-reported health while controlling for state dependence and unobserved

heterogeneity.
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P
(

Yi,t+1 = y′
∣∣Yi,t = y

)
y/y′ 1 2 3 4 5

P(Yi,t = y) 1 30.12 47.59 15.06 6.63 0.60

2 9.61 47.03 34.89 7.21 1.26

3 1.14 9.73 54.88 29.03 5.22

4 0.17 1.13 13.79 60.43 24.48

5 0.02 0.31 3.85 31.95 63.87

Table 1: Current and future self-reported health, United Kingdom.
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σn

0.01 0.05 0.1 0.25 0.5 1.0 2.0 5.0 10.0

n = 500 1.539 0.832 0.824 0.832 0.832 0.831 0.830 0.830 0.830

(3.241) (0.493) (0.368) (0.329) (0.319) (0.317) (0.317) (0.317) (0.317)

n = 1000 1.508 0.807 0.785 0.787 0.784 0.784 0.784 0.784 0.783

(2.475) (0.435) (0.309) (0.248) (0.233) (0.231) (0.231) (0.231) (0.231)

n = 5000 0.829 0.767 0.751 0.739 0.736 0.735 0.735 0.736 0.736

(0.352) (0.149) (0.106) (0.092) (0.088) (0.086) (0.085) (0.085) (0.085)

n = 10000 0.733 0.736 0.732 0.733 0.735 0.735 0.734 0.734 0.734

(0.259) (0.108) (0.079) (0.058) (0.053) (0.052) (0.052) (0.052) (0.052)

n = 50000 0.745 0.737 0.737 0.736 0.735 0.736 0.736 0.736 0.736

(0.102 (0.047) (0.039) (0.035) (0.033) (0.031) (0.031) (0.031) (0.031)

n = 100000 0.725 0.728 0.730 0.732 0.732 0.732 0.732 0.732 0.732

(0.079 (0.029) (0.021) (0.020) (0.020) (0.019) (0.019) (0.019) (0.019)

n = 150000 0.740 0.734 0.733 0.732 0.732 0.732 0.733 0.733 0.733

(0.056) (0.026) (0.022) (0.020) (0.019) (0.018) (0.018) (0.018) (0.018)

n = 200000 0.732 0.732 0.732 0.732 0.732 0.732 0.732 0.732 0.732

(0.058) (0.027) (0.021) (0.017) (0.015) (0.015) (0.015) (0.015) (0.015)

n = 260601 0.735 0.731 0.732 0.732 0.732 0.732 0.732 0.732 0.732

(0.045) (0.021) (0.017) (0.014) (0.012) (0.012) (0.012) (0.012) (0.012)

Table 2: Simulation results for autoregressive parameter ρ = 0.733. Averages of estimator value

across S = 100 replications in regular font. Standard deviations are below them, in

parentheses.
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σn

0.01 0.05 0.1 0.25 0.5 1.0 2.0 5.0 10.0

Threshold parameter: γ2 =−3.275

n = 500 -15.292 -9.344 -7.853 -7.000 -6.790 -6.695 -6.713 -6.767 -6.744

n = 1000 -14.707 -6.704 -5.178 -4.375 -4.295 -4.273 -4.273 -4.268 -4.268

n = 5000 -4.276 -3.329 -3.295 -3.280 -3.279 -3.283 -3.286 -3.287 -3.288

n = 10000 -3.951 -3.369 -3.356 -3.332 -3.319 -3.313 -3.313 -3.313 -3.313

n = 50000 -3.325 -3.287 -3.282 -3.275 -3.275 -3.275 -3.275 -3.275 -3.275

n = 100000 -3.314 -3.270 -3.268 -3.268 -3.270 -3.271 -3.271 -3.272 -3.272

n = 150000 -3.303 -3.292 -3.289 -3.286 -3.283 -3.281 -3.281 -3.280 -3.280

n = 200000 -3.286 -3.275 -3.274 -3.272 -3.272 -3.272 -3.272 -3.272 -3.272

n = 260601 -3.283 -3.280 -3.278 -3.277 -3.277 -3.277 -3.277 -3.277 -3.277

Threshold parameter: γ4 = 3.326

n = 500 13.420 9.837 8.536 7.501 7.426 7.347 7.298 7.284 7.282

n = 1000 12.091 5.524 4.964 4.865 4.767 4.763 4.738 4.740 4.740

n = 5000 5.477 3.454 3.375 3.363 3.371 3.373 3.373 3.372 3.372

n = 10000 4.456 3.407 3.358 3.340 3.330 3.324 3.321 3.320 3.320

n = 50000 3.411 3.336 3.333 3.331 3.330 3.330 3.330 3.330 3.330

n = 100000 3.324 3.341 3.342 3.340 3.339 3.340 3.340 3.340 3.340

n = 150000 3.375 3.339 3.333 3.332 3.331 3.331 3.331 3.331 3.331

n = 200000 3.338 3.329 3.330 3.329 3.329 3.329 3.329 3.329 3.329

n = 260601 3.320 3.327 3.327 3.327 3.326 3.326 3.326 3.326 3.326

Table 3: Simulation results for CCMLE of threshold parameters γ2 = −3.275 and γ4 = 3.326.

Reported values are averages over S = 100 simulation replications.33



σn

0.01 0.05 0.1 0.25 0.5 1.0 2.0 5.0 10.0

n = 500 0.98 0.98 0.95 0.97 0.99 0.99 0.98 0.99 0.99

23.0 6.5 4.1 3.1 2.7 2.6 2.5 2.5 2.5

n = 1000 0.95 0.96 0.97 0.95 0.95 0.96 0.95 0.96 0.96

14.2 3.6 2.3 1.5 1.3 1.2 1.2 1.2 1.2

n = 5000 0.99 0.99 0.96 0.92 0.93 0.93 0.94 0.94 0.94

4.6 1.5 1.1 0.8 0.7 0.7 0.6 0.6 0.6

n = 10000 0.92 0.92 0.95 0.96 0.94 0.94 0.93 0.93 0.92

2.4 0.9 0.6 0.5 0.4 0.4 0.4 0.4 0.4

Table 4: Simulation results for the 95% confidence interval for β1 based on a normal

approximation with bootstrap standard errors from 100 bootstrap replications. Results

are based on S = 100 simulation replications. Coverage probabilities are in regular font.

Confidence interval width is in small font below.
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σn

(ρ2,ρ3,ρ4) β1 β6 ρ γ2 γ4

0.049 -0.370 -3.275 3.326

δ = 0 (0,0.733,0.733) 0.004 -0.374 0.738 -3.274 3.346

(0.098 (0.265) (0.063) (0.180) (0.196)

δ = 0.1 (0.1,0.733,0.833) 0.004 -0.376 0.678 -3.325 3.377

(0.100) (0.254) (0.064) (0.177) (0.201)

δ = 0.2 (0.2,0.733,0.933) 0.007 -0.362 0.624 -3.352 3.441

(0.092) (0.254) (0.061) (0.176) (0.200)

δ = 0.3 (0.3,0.733,1.033) 0.014 -0.328 0.569 -3.389 3.479

(0.094) (0.254) (0.060) (0.179) (0.207)

δ = 0.4 (0.4,0.733,1.133) 0.018 -0.322 0.511 -3.409 3.540

(0.093) (0.250) (0.062) (0.177) (0.207)

Table 5: Simulation results for our sensitivity analysis for a model with general dynamics, with

n = 10000 and σn = 1.
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(a) (b) (c) (d) (e) (f) (g) (h) (i)

DOLFE DOLFE DOLFE DOLFE FEOL DOL OL FELM LM

σn = 1 σn = 0.1 σn = 10 σn = 1

log(income) 0.049 -0.047 0.059 0.061 0.020 0.340 0.492 0.003 0.194

(0.033) (0.056) (0.029) (0.029) (0.019) (0.004) (0.004) (0.003) (0.002)

child -0.030 0.006 -0.031 -0.026 0.021 0.060 0.089 0.002 0.033

(0.051) (0.069) (0.050) (0.049) (0.032) (0.005) (0.005) (0.005) (0.002)

married 0.139 -0.041 0.157 0.130 0.164 0.073 0.141 0.029 0.062

(0.087) (0.119) (0.086) (0.088) (0.053) (0.007) (0.008) (0.009) (0.003)

unemp -0.188 -0.230 -0.178 -0.196 -0.242 -0.308 -0.033 -0.127

(0.070) (0.110) (0.068) (0.038) (0.014) (0.015) (0.007) (0.006)

retired -0.132 -0.043 -0.139 -0.154 -0.050 -0.097 -0.027 -0.047

(0.082) (0.119) (0.080) (0.041) (0.010) (0.011) (0.007) (0.004)

other -0.370 -0.207 -0.369 -0.473 -0.771 -1.087 -0.082 -0.460

(0.061) (0.087) (0.061) (0.040) (0.010) (0.012) (0.007) (0.005)

ρ 0.733 0.723 0.733 0.734 1.987

(0.020) (0.025) (0.020) (0.017) (0.023)

γ2 -3.275 -3.260 -3.272 -3.211 -3.487 -2.506 -1.992

(0.054) (0.068) (0.053) (0.048) (0.015) (0.007) (0.006)

γ4 3.326 3.356 3.329 3.321 3.997 3.089 2.603

(0.055) (0.076) (0.055) (0.054) (0.024) (0.006) (0.006)

Table 6: Main results.
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